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Context



Motivation



Natural Disasters (hurricane Floyd ’11)



Natural Disasters (hurricane Maria ’17)

How bad is it going to be?



Natural Disasters (Irma ’11, Sandy ’12)

Large Scale

$70 Billion in Damage

Very Costly



Targeted Attacks (e.g. metcalf sniper attack)



Inquiring Minds What to Know

MitigationUnderstand Vulnerability



Challenges



Some Things We Know

FERC 715 Filings 
(AC Transmission Systems)NOAA Storm Tracks



The simplest thing I can think of…

Simulate 
Hurricanes

Solve AC  
Power Flow

Estimate 
Damage



Applying Damage

http://immersive.erc.monash.edu.au/stac/



An Inconvenient Fact

 

NO SOLUTION
By Hand: 

Shed Loads, 
Re-dispatch Generators

Very Difficult!

http://immersive.erc.monash.edu.au/stac/


AC Power Flow Solver Challenges

• Finding a solution to the AC power flow equations, without a base-point 
solution, is “maddeningly difficult”

A Comparison of the AC and DC Power Flow 
Models for LMP Calculations 

Thomas J. Overbye,   Xu Cheng,   Yan Sun 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign 
Urbana, IL  61801  USA 

overbye@ece.uiuc.edu, xucheng@students.uiuc.edu, yansun@students.uiuc.edu 

Abstract 

The paper examines the tradeoffs between using a full ac 
model versus the less exact, but much faster, dc power 
flow model for LMP-based market calculations.  The 
paper first provides a general discussion of the 
approximations associated with using a dc model, with an 
emphasis on the impact these approximations will have on 
security constrained OPF (SCOPF) results and LMP 
values.  Then, since the impact of the approximations can 
be quite system specific, the paper provides case studies 
using both a small 37 bus system and a somewhat larger 
12,965 bus model of the Midwest U.S. transmission grid.  
Results are provided comparing both the accuracy and the 
computational requirements of the two models.  The 
general conclusion is that while there is some loss of 
accuracy using the dc approximation, the results actually 
match fairly closely with the full ac solution.     

1.  Introduction 

The most accurate approach for modeling the steady-
state behavior of balanced, three phase, electric power 
transmission networks is through the solution of the power 
flow.  From the power flow solution, which contains the 
voltage magnitude and phase angles at each bus in the 
system, all other values can be derived, including the real 
and reactive flows on all the lines in the system.  The 
power flow, which requires the iterative solution of a set 
of nonlinear algebraic equations, is typically taught in the 
junior or senior year of an electric power engineering 
curriculum.  It is also considered the most heavily used 
tool by power system engineers.  With modern computers 
the power flow for even a fairly large system, such as the 
NERC 43,000 bus model of the North American Eastern 
Interconnect, can often be solved in seconds. 

However, a “secret” well-known to practicing 
engineers is the power flow solution can often be 
maddeningly difficult to obtain, particularly when a good 
initial guess of the solution is not available.  The “flat 
start” starting point taught to undergraduates for small 
systems rarely works when solving large, realistic systems.  

These convergence problems are especially troublesome 
when one tries to substantially change the operating point 
for a previously solved case, such as by scaling the 
load/generation levels.   

There are several reasons for these solution difficulties.  
First, the nonlinear power balance equations themselves 
usually have a large number of alternative (low voltage) 
solutions, or, more rarely, no solution [1].  So even when 
the power flow converges it may not have found the 
desired solution.  Second, when using the common 
Newton-Raphson method the region of convergence for 
these solutions, including the desired high-voltage 
solution, is fractal [2], [3], [4].  For stressed systems a 
“reasonable” initial guess might actually be in the region 
of convergence of a low voltage solution.  Third, the 
power flow algorithm must not only solve the nonlinear 
power balance equations, but it must often determine the 
correct values for large number of discrete and/or limited 
automatic controls.  These controls values include 
generator AVR status, LTC and phase shifting transformer 
tap positions, discrete switched shunt reactive 
compensation values, the power flow on direct current 
(DC) lines, and more recently the values for FACTS 
devices.  Further complicating the situation, the series 
impedance of the LTC and phase shifting transformers is 
often dependent upon the transformer's tap value.  Last, 
the power flow models themselves are often “hard-coded” 
for a specified operating point.  This hard-coding is 
particularly apparent with the values of fixed reactive 
shunts at buses, which usually represent manually 
switched capacitors, but is also apparent in the control 
settings for other devices such as phase shifting and LTC 
transformers, and generator voltage setpoint values.  For 
example, scaling down the load/generation for a peak case, 
and then trying to resolve can be very problematic since 
the large amount of fixed, primarily capacitive, 
compensation quickly results in abnormally high voltages. 

In addition to convergence difficulties, solving the full 
power flow can be time consuming, particularly when a 
large number of contingencies need to be considered.  
While a single solution for a large system may solve in 
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Some AC Power Flow “Optimization Tricks”

Simple approximations, like 
DC Power Flow are not reliable

Done before convex relaxations 
were well understood 

(by me at least)

1

A Linear-Programming Approximation of
AC Power Flows

Carleton Coffrin, Member, IEEE, Pascal Van Hentenryck, Member, IEEE

Abstract—Linear active-power-only DC power flow approx-
imations are pervasive in the planning and control of power
systems. However, these approximations fail to capture reactive
power and voltage magnitudes, both of which are necessary in
many applications to ensure voltage stability and AC power
flow feasibility. This paper proposes linear-programming models
(the LPAC models) that incorporate reactive power and voltage
magnitudes in a linear power flow approximation. The LPAC
models are built on a convex approximation of the cosine terms
in the AC equations, as well as Taylor approximations of the
remaining nonlinear terms. Experimental comparisons with AC
solutions on a variety of standard IEEE and MATPOWER
benchmarks show that the LPAC models produce accurate
values for active and reactive power, phase angles, and voltage
magnitudes. The potential benefits of the LPAC models are
illustrated on two “proof-of-concept” studies in power restoration
and capacitor placement.

Index Terms—DC power flow, AC power flow, LP power flow,
linear relaxation, power system analysis, capacitor placement,
power system restoration

NOMENCLATURE
e
I AC Current
e
V = v + i✓ AC voltage
e
S = p+ iq AC power
e
Z = r + ix Line impedance
e
Y = g + ib Line admittance
e
Y

b
= g

y
+ ib

y Y-Bus element
e
Y

c
= g

c
+ ib

c Line charge
e
Y

s
= g

s
+ ib

s Bus shunt
e
T = t+ is Transformer parameters
e
V = |eV |\✓� Polar form
e
Sn AC Power at bus n

e
Snm AC Power on a line from n to m

PN Power network
N Set of buses in a power network
L Set of lines in a power network
G Set of voltage controlled buses
s Slack Bus
|eV h| Hot-Start voltage magnitude
|eV t| Target voltage magnitude
� Voltage magnitude change
� Absolute difference
� Percent difference
x̂ Approximation of x
x Upper bound of x
x Lower bound of x

C. Coffrin and P. Van Hentenryck are members of the Optimization
Research Group, NICTA, Victoria 3010, Australia. P. Van Hentenryck is
Professor in the School of Engineering at the University of Melbourne.

I. INTRODUCTION

OPTIMIZATION technology is widely used in modern
power systems [1] and has resulted in millions of dollars

in savings annually [2]. But the increasing role of demand
response, the integration of renewable sources of energy,
and the desire for more automation in fault detection and
recovery pose new challenges for the planning and control of
electrical power systems [3]. Power grids now need to operate
in more stochastic environments and under varying operating
conditions, while still ensuring system reliability and security.

Optimization of power systems encompasses a broad spec-
trum of problem domains, including optimal power flow [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], LMP-base
market calculations [15], [16], [17], transmission switching
[18], [19], [20], real-time security-constrained dispatch [21],
[22], day-ahead security-constrained unit commitment [23],
[24], [25], distribution network configuration [26], [27], capac-
itor placement [28], [29], [30], expansion planning [31], [32],
[33], [34], [35], [36], [37], [38], [39], vulnerability analysis
[40], [41], [42], [43], [44], and power system restoration [45],
[46] to name a few. Some of these use active power only,
while others consider both active and reactive power.

Restricting attention to active power is often appealing
computationally as the nonlinear AC power flow equations
can then be approximated by a set of linear equations that
define the so-called Linearized DC (LDC) model. Under
normal operating conditions and with some adjustment for
line losses, the LDC model produces a reasonably accurate
approximation of the AC power flow equations for active
power [47]. Moreover, the LDC model can be embedded in
Mixed-Integer Programming (MIP) models for a variety of
optimization applications in power system operations. This is
particularly attractive as the computational efficiency of Linear
Programming (LP) and MIP solvers has significantly improved
over the last two decades [48].

However, the LDC model does not capture reactive power
and hence cannot be used for applications such as capacitor
placement and voltage stability to name only two. Moreover,
the accuracy of the LDC model outside normal operating
conditions is an open point of discussion (e.g., [15], [47], [49],
[50], [51]). This in turn raises concerns for other applications
such transmission planning, vulnerability analysis, and power
restoration, which may return infeasible or suboptimal solu-
tions when the LDC model is used to approximate the AC
power flow equations. As a result, these applications often
turn to nonlinear programming techniques [8], [13], [14],
[17], iterative heuristics and decomposition [11], [12], [36],
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Accurate Load and Generation Scheduling
for Linearized DC Models with Contingencies
Carleton Coffrin, Student Member, IEEE, Pascal Van Hentenryck, Member, IEEE, and Russell Bent

C. Coffrin and P. Van Hentenryck are with the Department of Computer
Science, Brown University, Providence RI 02912, USA.
R. Bent is with Los Alamos National Laboratory, Los Alamos NM 87545.

I. INTRODUCTION

R ESTORING a power system after a significant disruption
(e.g., a cascading blackout or a seasonal hurricane) is

an important task with consequences on both human and
economic welfare. Power system components must be repaired
and then re-energized without causing additional network
instability. The restoration effort should be prioritized to
minimize the size of the blackout by jointly optimizing repairs

Abstract-This paper studies the applicability of the linearized
DC model in optimizing power restoration after significant
network disruptions. In such circumstances, no AC base-point
solution exists and the objective is to maximize the served load.
The paper demonstrates that the accuracy of the linearized
DC model degrades with the size of the disaster and that
it can significantly underestimate active and apparent power.
To remedy these limitations, the paper proposes an Angle-
Constrained DC Power Flow (ACDCPF) model that enforces
constraints on the line phase angles and has the ability to shed
load and generation across the network. Experimental results on
N-3 contingencies in the IEEE30 network and power restoration
instances from disaster recovery show that the ACDCPF model
provides significantly more accurate approximations of active
and apparent power. In the restoration context, the ACDCPF
model is shown to be much more reliable and produces significant
reduction in the size of the blackouts.

Index Terms-power flow, dc power flow, power system anal-
ysis, power system restoration.

IIViII
O?
Ojj
Z
X

Ybus
bY(i,j)
gY(i, j)
Pi
qj

Pij
qij

c(i, j)
PN
N
L

NOMENCLATURE

Voltage magnitude of bus i, volts
Phase angle of bus i, radians
Phase angle for line i to j, i.e., Of - OJ
Impedance
Reactance
The nodal admittance matrix
A susceptance from the Ybus(i,j) matrix
A conductance from the Ybus(i,j) matrix
Active power at bus i, MW
Reactive power at bus i, MVar
Active power on a line from i to j, MW
Reactive power on a line from i to j, MVar
Capacity on a line from i to j, MVA
A power network
A set of buses from a power network
A set of lines from a power network

and power restoration. Our earlier work [1] approached this
joint optimization using a sequence of optimization problems
based on the linearized DC model.
Power restoration problems are daunting for a variety

of reasons. First, since no typical operating base point is
known, solving the resulting AC power flow problems is
often challenging [2]. Second, good restoration plans jointly
optimize the routing of repair crews and the scheduling of
component energizing. The resulting optimization is a mixed
integer nonlinear programming problem which is extremely
challenging computationally. As a consequence, the power
restoration algorithm proposed in [1] uses the linearized DC
model in several steps, which makes it possible to model the
problem in terms of mixed integer programs instead of mixed
integer nonlinear programs.
The linearized DC model has been adopted as a general-

purpose tool for a variety of power system optimizations in
recent years (e.g., [2], [3]). However, its accuracy has been
the topic of much discussion: Most papers (e.g., [2], [4])
take an optimistic outlook, while others (e.g., [5], [6]) are
more pessimistic. This issue is of particular interest for power
restoration which involves human and economic welfare. It
is critical that the linearized DC solution be a reasonable
approximation of a high-quality AC power flow solution to
avoid causing additional network instability.
This paper studies the adequacy of using the linearized

DC model for power restoration. It shows that, for power
restoration, the linearized DC model may underestimate line
loading significantly and produce solutions that are not feasible
in an AC solver. Moreover, the experimental results suggest
that large line phase angles are a good indicator of inaccu-
rate active and apparent power estimations. The paper then
proposes an Angle-Constrained DC Power Flow (ACDCPF)
model that enforces constraints on the line phase angles and
has the ability to shed load and generation across the network.
The practicality of the approach is demonstrated on more
than 11,000 damage contingencies in the IEEE30 network
and validated on real-world power restoration problems arising
in disaster management. The paper shows that the ACDCPF
model produces solutions that are highly correlated with the
AC power flowmodel and that these improvements in accuracy
come with a reasonably small cost in load shedding. In
particular, in the restoration context, the ACDCPF model is
shown to be much more reliable and to produce significant
reductions in the size of the blackouts compared to the linear
DC model.
The rest of the paper is organized as follows, Section II gives

a brief review on power system modeling. Section III motivates

978-1-4673-2729-9/12/$31.00 ©2012 IEEE

Transmission system restoration with co-optimization of repairs, load
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a b s t r a c t

This paper studies the restoration of a transmission system after a significant disruption such as a natural
disaster. It considers the co-optimization of repairs, load pickups, and generation dispatch to produce a
sequencing of the repairs that minimizes the size of the blackout over time. The core of this process is a
Restoration Ordering Problem (ROP), a non-convex mixed-integer nonlinear program that is outside the
capabilities of existing solver technologies. To address this computational barrier, the paper examines
two approximations of the power flow equations: The DC model and the recently proposed LPAC model.
Systematic, large-scale testing indicates that the DC model is not sufficiently accurate for solving the ROP.
In contrast, the LPAC power flow model, which captures line losses, reactive power, and voltage magni-
tudes, is sufficiently accurate to obtain restoration plans that can be converted into AC-feasible power
flows. An experimental study also suggests that the LPAC model provides a robust and appealing tradeoff
between accuracy and computational performance for solving the ROP.

! 2015 Published by Elsevier Ltd.

Introduction

Restoring a power system after a significant disruption (e.g., a
natural disaster) is an important task with consequences on both
human and economic welfare. To mitigate the consequences of
such events, the next generation of power system is expected to
be more resilient and self healing [1]. This work focuses on the
restoration of the transmission system, which is computationally
challenging for a variety of reasons. First, since no typical operating
point is known for the damaged network, it is often difficult to
determine a steady-state power flow for the network, i.e., a solu-
tion to the AC power flow problem [2]. Second, restoration plans
must jointly optimize the routing of repair crews, the scheduling
of component energizing, load pickups, and generation dispatch.
The resulting optimization problem is a non-convex mixed-integer
nonlinear program, which is extremely hard from a computational
standpoint.

These difficulties are addressed in the power restoration algo-
rithm proposed in [3] by decomposing the problem into several
steps. The algorithm decouples the power system and logistics
aspects, first scheduling the component energizings and then rout-
ing the repair crews. The two subproblems are linked through
precedence constraints that are derived from the power schedule
and injected into the crew routing. This paper focuses on the first
step of this decomposition, the so-called Restoration Order
Problem (ROP). The goal of the ROP is to find a high-quality
restoration schedule, i.e., a sequence of steady-state power flows
for the network that minimizes the size of the blackout over time.
Each steady-state corresponds to a restoration action (e.g., repair-
ing a line) and may increase the served load and change the
generation dispatch compared to earlier steady-states.

To find a high-quality restoration plan, the ROP formulation in
[3] relies on the DC power flow approximation, which is widely
used in power system optimization (e.g., [2,4–6]). However, the
accuracy of the DC power flow is a topic of much discussion:
Some papers take an favorable outlook, (e.g., [2,7]), while others
(e.g., [8–11]) are more cautious. The accuracy of the DC power flow
is particularly important in power restoration as a feasible AC
base-point solution is often not available and it is preferable to
operate the network near its design limits.

This paper investigates the usefulness of the DC power flow
model and the recent LPAC power flow model [12] for optimization

http://dx.doi.org/10.1016/j.ijepes.2015.02.027
0142-0615/! 2015 Published by Elsevier Ltd.

q An earlier version of this work appeared in the Proceedings of the 18th Power
Systems Computation Conference (PSCC), Wroclaw, Poland, August 2014.
⇑ Corresponding author at: Optimisation Research Group, NICTA Victoria, VIC,

Australia. Tel.: +61 403 754 676.
E-mail addresses: calreton.coffrin@nicta.com.au (C. Coffrin), pvh@nicta.com.au

(P. Van Hentenryck).
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Goal of this work: 
Go beyond Power Flow approximations.   

Explore if Convex Relaxations and Non-Linear 
Programming can be used to solve this problem on 

realistic datasets (i.e. FERC 715).



Overview

• Motivation 
• AC Optimal Power Flow Problem (AC-OPF) 
• Adapt AC-OPF to the AC with Damage Problem (Take 1) 
• Preliminary Testing 
• Revised Formulation of the AC with Damage Problem (Take 2) 
• Experimental Evaluation



AC Optimal Power Flow Model



Some Preliminaries

• Accept Matpower AC mathematics 
• Mathematics captures 90% of real-world data 

• Everything presented in complex numbers 
• Uppercase are complex numbers 
• Lowercase are real numbers 
• Bold values are constants

X = x+ iy

X

⇤ = x� iy

XX

⇤ = |X|2 = x

2 + y

2



Network Components and Parameters

1 2

4

3

5

vli, v
u
i 8i 2 N

ViBus Voltage

Bounds

Sd
i 8i 2 NBus Load

Y s
iBus Shunt

f(Sg
i ) 8i 2 N

Sgl
i , Sgu

i 8i 2 NGen. Bounds

Fuel Cost

Sg
i Gen. Output

suij 8(i, j) 2 E

✓�ij 8(i, j) 2 E

Yij 8(i, j) 2 E

Sij Line Flow

Admittance

Thermal Lim.

Angle Lim.
bcijLine Charge

TransformerTij



Simple Power Flow Equations

Sij = Y ⇤
ijViV

⇤
i � Y ⇤

ijViV
⇤
j

Ohm’s Law on Lines

Sg
i � Sd

i =
X

(i,j)2E[ER

Sij

Kirchhoff's Current Law (KCL) on buses



Complete Power Flow Equations

Ohm’s Law on Lines

Kirchhoff's Current Law (KCL) on buses

Sij =

✓
Y ⇤
ij � i

bcij
2

◆
|Vi|2

|Tij |2
� Y ⇤

ij

ViV ⇤
j

Tij

Sji =

✓
Y ⇤
ij � i

bcij
2

◆
|Vj |2 � Y ⇤

ij
V ⇤
i Vj

T ⇤
ij

Sg
i � Sd

i � Y s
i |Vi|2 =

X

(i,j)2E[ER

Sij



Fuel Cost Objective

AC Optimal Power Flow Model (AC-OPF)

variables: Sg
i (8i 2 N), Vi(8i 2 N)

minimize:

X

I2N

c2i(<(Sg
i ))

2 + c1i<(Sg
i ) + c0i

subject to: vl
i  |Vi|  vu

i 8i 2 N

Sgl
i  Sg

i  Sgu
i 8i 2 N

Sg
i � Sd

i � Y s
i |Vi|2 =

X

(i,j)2E[ER

Sij 8i 2 N

Sij =

✓
Y ⇤
ij � i

bcij
2

◆
|Vi|2

|Tij |2
� Y ⇤

ij

ViV ⇤
j

Tij
(i, j) 2 E

Sji =

✓
Y ⇤
ij � i

bcij
2

◆
|Vj |2 � Y ⇤

ij
V ⇤
i Vj

T ⇤
ij

(i, j) 2 E

|Sij |  suij 8(i, j) 2 E [ ER

� ✓�
ij  \(ViV

⇤
j )  ✓�

ij 8(i, j) 2 E

Voltage Bounds
Generation Bounds
KCL

Ohm’s Law

Thermal Limit
Angle Limit
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IEEE TRANSACTIONS ON POWER SYSTEMS 1

AC-Feasibility on Tree Networks is NP-Hard
Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck

Abstract—Recent years have witnessed significant interest in
convex relaxations of the power flows, with several papers showing
that the second-order cone relaxation is tight for tree networks
under various conditions on loads or voltages. This paper shows
that ac-feasibility, i.e., to find whether some generator dispatch
can satisfy a given demand, is NP-hard for tree networks.
Index Terms—Computational complexity, optimal power flow

(OPF).

NOMENCLATURE

AC-network.

Set of buses.

Set of generators.

Set of loads.

Bus of a network.

Bus of a network.

Set of lines.

Set of lines with direction.

Susceptance.

Conductance.

Line from to with conductance and
susceptance .

Capacity of a line.

Maximum phase angle difference.

Phase angle at bus .

Real line power flow for phase angle difference
of .

Reactive line power flow for phase angle
difference of .

Real power flow on line ( ).

Reactive power flow on line ( ).

Real power demand.

Reactive power demand.

Manuscript received October 29, 2014; revised January 06, 2015; accepted
February 22, 2015. Date of publication nulldate; date of current version nulldate.
This work was supported by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.
Paper no. TPWRS-01499-2014.
The authors are with the Optimisation Research Group, NICTA, Canberra,

Australia.
Digital Object Identifier 10.1109/TPWRS.2015.2407363

I. INTRODUCTION

M ANY interesting applications in power systems, in-
cluding optimal power flows, optimize an objective

function over the steady-state power flow equations, which are
nonlinear and nonconvex. These applications typically include
an ac-feasibility (AC-FEAS) subproblem: find whether some
generator dispatch can satisfy a given demand.
Although the set of ac-feasible solutions is in general a non-

convex set, this does not imply that the ac-feasibility problem
is NP-hard,1 as nonconvexity does not imply NP-hardness. For
example, the family of optimization problems such that

where has a nonconvex constraint
and a nonconvex solution set but the optimal solution is always

and can be trivially computed.
The first NP-hardness proof for ac-feasibility was given for

a cyclic network structure in [1]. It relies on a variant of the dc
model [2] but uses a sine function around the phase angle dif-
ference. From an ac perspective, this means that conductances
are 0, voltage magnitudes are all fixed at 1, and reactive power
is ignored.
This paper proves that ac-feasibility is NP-hard for tree net-

works. As is typical for NP-hardness proofs, the NP-hardness
reduction only uses a subset of all ac power flow instances. In
particular, the proof uses power flow instances where voltage
magnitudes are fixed to 1 in the per-unit system and there is ex-
actly one load with a positive reactive power demand. The proof
does not require bounds on generation and is valid for realistic
conductances, susceptances, and bounds on the phase angles.
This NP-hardness result provides a counterpart to a series of

positive results on convex relaxations of the ac power flow equa-
tions following the seminal work of Jabr et al. [3], [4]. See also
[5]–[8], as well as the comprehensive survey in [9]. In particular,
this survey indicates that there are three types of sufficient con-
ditions that guarantee exactness of the convex relaxations for the
optimal power flow (OPF) problem, i.e., minimizing the gener-
ation dispatch costs while satisfying a given demand (ac-fea-
sibility is a subproblem of OPF). The first sufficient condition
is linear separability, which is violated by the instances in the
NP-hardness reduction which fix the injection at the load. The
second sufficient condition requires that the upper bound on the
voltage bound is not tight, which is violated in the reduction in-
stances where the voltage magnitude is fixed. The final set of
conditions requires that the phase angle difference across each
line depends on the ratio of conductance and susceptance and
that there is no lower bound on reactive power. These condi-
tions are once again violated in the proof whose instances have

1Recall that a problem is NP-hard if every problem in NP can be reduced to
it in polynomial time.

0885-8950 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



The Problem with Non-Convexity

Non-Convex  
Interior Point Methods

Local Optimum

Pro: 
Can produce a feasible solution 

Con: 
No guarantees (opt. or feasible)

Convex Relaxation 
Interior Point Methods

0

5

Pro: 
Guarantees (opt!) 

Con: 
Can cheat (not non-convex feasible)



AC Optimal Power Flow Model (AC-OPF)

How to convexify 
this thing?
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Radial Distribution Load Flow Using Conic Programming
Rabih A. Jabr, Member, IEEE

Abstract—This paper shows that the load flow problem of a ra-
dial distribution system can be modeled as a convex optimization
problem, particularly a conic program. The implications of the
conic programming formulation are threefold. First, the solution
of the distribution load flow problem can be obtained in polyno-
mial time using interior-point methods. Second, numerical ill-con-
ditioning can be automatically alleviated by the use of scaling in
the interior-point algorithm. Third, the conic formulation facili-
tates the inclusion of the distribution power flow equations in ra-
dial system optimization problems. A state-of-the-art implementa-
tion of an interior-point method for conic programming is used to
obtain the solution of nine different distribution systems. Compar-
isons are carried out with a previously published radial load flow
program by R. Cespedes.

Index Terms—Load flow control, nonlinear programming, opti-
mization methods.

I. INTRODUCTION

THE LOAD flow program is an essential tool for the
efficient operation and control of power distribution

networks. The distribution systems are characterized by their
prevailing radial nature and high R/X ratio. This renders the
load flow problem ill-conditioned. Early research indicated that
standard load flow methods fail to converge for ill-conditioned
test systems [1]. Methods for radial distribution have therefore
been predominantly based on forward/backward sweeping of
the network tree representation [2]. An efficient radial load
flow technique that employs in the forward sweep the solution
to a biquadratic equation was developed by Cespedes [3]. The
biquadratic equation in [3] relates the voltage magnitudes at the
sending and receiving ends of each branch to the power flow
at the receiving end. Cespedes’ approach has been accepted
by many power system researchers. In fact, minor variants
of this method have been applied in [4] and [5]. Moreover,
Cespedes’ load flow has been generalized in [6] to cater for
exponential load models. It has been also applied in voltage
stability analysis of radial distribution networks [7].

This letter presents a radial load flow solution based on conic
programming. Section II formulates the load flow problem as
a set of linear constraints and active rotated quadratic cones.
The formulation as a conic program together with a summary of
numerical results is given in Section III. This paper is concluded
in Section IV.

II. DISTRIBUTION LOAD FLOW

Consider the single-line equivalent circuit shown in Fig. 1 (all
relevant quantities are in per-unit). The line model without shunt

Manuscript received November 29, 2005. Paper no. PESL-00105-2005.
The author is with the Electrical, Computer, and Communication Engi-

neering Department, Notre Dame University, Zouk Mosbeh, Lebanon (e-mail:
rjabr@ndu.edu.lb).

Digital Object Identifier 10.1109/TPWRS.2006.879234

Fig. 1. Distribution line model.

connections is sufficient to describe fully the concepts in this
paper.

The real/reactive power flows from node to node are

(1)

(2)

where . By defining ,
, and , (1) and (2) become

(3)

(4)

In (3) and (4), and are constrained such that

(5)

Equations (3)–(5) can be used to define the radial load flow
problem. Let be the number of nodes in the distribution
system with node 1 being connected to the power substation.
It is assumed that the magnitude of the voltage at this node
is specified. The power injection constraints at each of the

remaining nodes are

(6)

(7)

In (6) and (7), denotes the set of nodes connected to node
, and denote the real/reactive power loads at node .

Equations (6) and (7), when evaluated for , define a
linear system with equations. Note that the number
of lines in a radial network is . Because
and , the total number of variables is .
Therefore, additional equations are required to solve
for the variables. These equations result from (5) enforced for
all lines.

The system of equations defined by (5)–(7) can be solved to
obtain the radial load flow solution. The original variables can
be easily deduced once the new adopted variables are computed.
In fact, Expósito and Ramos [8] have proposed a radial load flow
technique based on solving a very similar system of equations
using the Newton approach. In the accompanying discussion of

0885-8950/$20.00 © 2006 IEEE



SOC Optimal Power Flow Model (SOC-OPF)

Wij = ViV
⇤
j

Variable Lifting

Valid Inequality
|Wij |2  WiiWjj

Valid Inequality

variables: Sg
i (8i 2 N), Wij(8(i, j) 2 E), Wii(8i 2 N)

minimize:

X

i2N

c2i(<(Sg
i ))

2 + c1i<(Sg
i ) + c0i

subject to: vl
i  Wii  vu

i 8i 2 N

Sgl
i  Sg

i  Sgu
i 8i 2 N

Sg
i � Sd

i � Y s
i Wii =

X

(i,j)2E[ER

Sij 8i 2 N

Sij =

✓
Y ⇤
ij � i

bcij
2

◆
Wii

|Tij |2
� Y ⇤

ij
Wij

Tij
(i, j) 2 E

Sji =

✓
Y ⇤
ij � i

bcij
2

◆
Wjj � Y ⇤

ij

W ⇤
ij

T ⇤
ij

(i, j) 2 E

|Sij |  suij 8(i, j) 2 E [ ER

tan(�✓�
ij )<(Wij)  =(Wij)  tan(✓�

ij )<(Wij) 8(i, j) 2 E

|Wij |2  WiiWjj 8(i, j) 2 E https://arxiv.org/abs/1502.07847

https://arxiv.org/abs/1502.07847


Adapting AC Optimal Power Flow 
for Component Damage



Adapting the AC-OPF to support Component Damage
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Adapting the AC-OPF to support Component Damage

variables: Sg
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Intuition, need to be able  
to shed loads. Trivial solution  
when 0 load in the system



AC Minimum Load Shedding Model (AC-MLS)
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Is this a sufficient 
formulation?



The Problem with Non-Convexity

Non-Convex  
Interior Point Methods

Local Optimum

Solver says Infeasible: 
Algorithm / Formulation

Convex  
Interior Point Methods

Solver says Infeasible: 
Formulation*

*up to floating point precision issues

Key Idea: Use a convex relaxation to diagnose 
issues in the non-convex formulation 



AC Minimum Load Shedding Relaxation (SOC-MLS)
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Valid Inequality
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Testing the SOC-MLS Formulation



Testing the SOC-MLS Formulation

• Testing SOC-MLS on the IEEE RTS 96 network 
• A small but well curated test case 
• All N-1 Cases (bus, generator, branch) 
• 1000 random N-30% of branches cases 

• Convergence on 99.0% of cases 
• Look at remaining 1.0% in detail 
• Counter examples by brute force



Testing the SOC-MLS Formulation

• Example of an infeasible case

isolated 
line charge 



Testing the SOC-MLS Formulation

• Example of an infeasible case

isolated 
bus shunt 



Testing the SOC-MLS Formulation

• Example of an infeasible case
isolated 

connected component 
without generation



Testing the SOC-MLS Formulation

• Long-Story Short… 

• The AC-MLS formulation requires at least 4 key features 
• Shed loads 
• Shed bus shunts 
• Un-commit Generators 
• Remove Buses 

• AC-MLS preprocessing 
• Remove “dangling buses” 
• Remove “connected components without load or generation” 
• Solve one connected component at a time



Revised AC-MLS Formulation



Revised AC Minimum Load Shedding Model (AC-MLS)

• 4 Variants 
• AC-MLS (MINLP) 
• AC-MLS-C (NLP) 
• SOC-MLS (MISOCP) 
• SOC-MLS-C (SOCP)
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Multi-Objective 
Implementation trick



Key Questions

• Do non-convex solvers “just work” in practice (like OPF?) 
• If so, is there a large optimality gap? 

• How much do we loose by convexifing? 
• AC to SOC 
• Discrete to Continuous 
• Which problem features are important? 

• Does AC-MLS still seem “maddeningly difficult”?

• 4 Variants 
• AC-MLS (MINLP) 
• AC-MLS-C (NLP) 
• SOC-MLS (MISOCP) 
• SOC-MLS-C (SOCP)



Experimental Evaluation



Experiment Design and Test Cases

• PGLib Test Cases Ranging from 73 to 6468 buses  
• Scaling properties 
• Test realistic sizes 

• 1000 random N-30% damage scenarios (branch only) 
• Was the hardest case to find feasible solutions in the 2011 study 

• Solvers: Bonmin, Pajarito (ipopt+gurobi), Ipopt (HSL ma27)

Test Case |N | |E| k Scenarios

IEEE RTS 96 73 120 36 1000

PSERC 240 240 448 134 1000

PEGASE 1354 1354 1991 597 1000

RTE 1888 1888 2531 759 1000

Polish 2383wp 2383 2896 869 1000

Polish 3120sp 3120 3693 1108 1000

RTE 6468 6468 9000 2700 1000



Convergence Results

SOC-MLS-C  
rocks!

For small 
networks, all 
formulations work

What about 
Opt. Gaps? 
SOC-C ok?

For large 
networks, AC 
feasibility is a 
significant issue 
on large cases

SOC Relaxation is 
fast and reliable

Solver Status Breakdown Average Runtime (seconds)
Status AC-MLS AC-MLS-C SOC-MLS SOC-MLS-C AC-MLS AC-MLS-C SOC-MLS SOC-MLS-C

IEEE RTS 96 (n=1000)
converged 98.60% 94.40% 100.00% 100.00% 16.18 0.14 0.50 0.07
time limit 1.40% – – – 1526.11 – – –

error – 5.60% – – – 150.00 – –

PSERC 240 (n=1000)
converged 71.30% 98.70% 100.00% 100.00% 18.46 1.54 4.10 0.32
time limit 3.70% 0.70% – – 1614.58 69.82 – –

error 25.00% 0.60% – – 1500.00 20.63 – –

PEGASE 1354 (n=1000)
converged 94.10% 100.00% 100.00% 100.00% 221.36 5.46 32.97 2.26
time limit 1.70% – – – 1598.14 – – –

error 4.20% – – – 1500.00 – – –

RTE 1888 (n=1000)
converged 84.30% 88.40% 100.00% 100.00% 99.38 10.53 67.21 2.53
time limit 0.10% 11.50% – – 1655.67 151.00 – –

error 15.60% 0.10% – – 1500.00 130.41 – –

Polish 2383wp (n=1000)
converged 86.00% 100.00% 99.80% 100.00% 121.58 7.64 38.43 3.04
time limit 1.30% – – – 1639.76 – – –

error 12.70% – 0.20% – 1500.00 – 990.95 –

Polish 3120sp (n=1000)
converged 15.70% 99.90% 99.80% 100.00% 659.79 9.49 67.67 4.03
time limit 74.00% 0.10% – – 1531.44 150.75 – –

error 10.30% – 0.20% – 1500.00 – 633.83 –

RTE 6468 (n=1000)
converged 14.50% 35.60% 99.60% 100.00% 865.42 57.17 648.47 12.34
time limit 3.10% 58.70% – – 1608.88 152.38 – –

error 82.40% 5.70% 0.40% – 1500.00 92.89 1500.00 –



Optimality Gaps

Obj. Val. Optimality Gap (%)
AC- AC- SOC- SOC-

Case MLS MLS-C MLS MLS-C

IEEE RTS 96 (n=914) 2.463e+04 0.0000% 0.0044% 0.0044%
PSERC 240 (n=707) 1.945e+06 -0.0049% 0.0010% 0.0010%

PEGASE 1354 (n=927) 2.001e+06 0.0022% 0.0024% 0.0037%
RTE 1888 (n=728) 1.010e+06 -0.0267% 0.0006% 0.0006%

Polish 2383wp (n=859) 5.759e+05 0.0064% 0.0062% 0.0077%
Polish 3120sp (n=155) 1.078e+06 0.0079% 0.0138% 0.0186%

RTE 6468 (n=54) 9.496e+06 -0.0151% 0.0003% 0.0003%

Those are some 
small gaps!



Proof-of-Concept Load Shedding Study (SOC-MLS-C)
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Great Variety in 
Distributions

Mean / Variance of 
Large Scale Branch 
Damage (i.e. 30%)

Reminiscent of  
Hurricane threat

What network  
features lead to 
N-30% variability?



Conclusions



Conclusions

• SOC-MLS-C is surprisingly good! 

• Convex Relaxation + Random Test Generation 
• Proving solution in-existence of AC problems is hard 
• Worked well for developing a seemingly feasible AC-MLS formulation 

• Future Work 
• Use SOC-MLS-C solutions to build AC-MLS feasible solutions 

• Special thanks to co-authors (e.g. Russell, Byron, Kaarthik, Scott)



Thanks!

https://arxiv.org/abs/1710.07861
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